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The principles of Mott and Littleton’s method are applied to calculation of enthalpies of migration of 
interstitial ions and cationic vacancies in NaNOJ. The ensuing results, 1.75 eV for the first mechanism, 
and 0.75 eV for the second, enable the conclusion to be drawn, in accordance with the experiment, that 
the transport of current is due to a migration of vacancies. 

Introduction 

It is known that an ionic crystal has, at a given 
temperature, a specific number of structural 
defects and that certain transport phenomena, 
such as the diffusion of matter or electric con- 
ductivity, are due to the migration of these 
defects. An interstitial ion, for example, moves 
under the action of an electric field in a succession 
of jumps between interstitial sites and this 
changing of place necessitates a certain quantity 
of energy, called enthalpy of migration. 

We have undertaken to determine theoretically 
the value of this enthalpy for interstitial cations 
and for cation vacancies in NaNO,, this salt 
presenting in effect a Frenkel cationic disorder 
(I). For this calculation we shall use the principles 
of Mott and Littleton’s method (2), which 
enabled us in earlier work (3) to determine the 
value of the enthalpy of formation of a pair of 
Frenkel defects in NaNO,. 

In accordance with this method, we have 
therefore considered two regions in the crystal: 
region I constituted by the ions neighboring the 
defect and region II containing the rest of the 
crystal ions. The presence of a defect disturbs the 
network. In the first region, the displacement x 
of each ion and the induced dipole p of each of 
these ions is calculated by writing that the 
electric and repulsion forces which affect it, and 
of which the resultants are Fe and F,, balance one 
another out. That is, 

F, + F, = 0. 

In the whole of this work, forces are counted 
positively when there is repulsion. A second 
equation is obtained by writing, in the classical 
way, that the electric dipole p+ induced on the 
ion under consideration satisfies the equation 

CL+ = 4Fdz’), 

CL+ (or -) being the electronic polarizability of 
the cation (or of the anion) and q’ the cation (or 
anion) charge. 

The expression of the repulsion force between 
two ions is naturally 

f = -aE,/ax. 

For E,, repulsion energy, we make use of an 
expression of the Born and Meyer type: 

E, = b exp (-r/p) = w(r), 

withb= 1.055 x IO-14Jandp=2.411 x lo-“rn 
(3). As in (3), we have considered only the 
repulsion forces between first neighbors. 

In region II the crystal is considered as a 
continuous and polarized medium. The displace- 
ments of ions and induced dipoles are given by 

x = M’qv/q’r2 (1) 

and 

CL+ = ~&vlr2), (2) 

q being the defect charge. The values of M’, 
iU+ and M- are, respectively, 3.7 x 10e2, 
4.3 x 10e2, and 9.5 x 10m2 (3). 
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Enthalpy of Migration of Interstitial Ions 

Sodium nitrate crystallizes in the rhombo- 
hedric system, the characteristics of whose net- 
work are r0 = 3.24 A and u = 102”40’. We have 
supposed that the interstitial cation occupies the 
center of an elementary rhombohedron, that is 
to say, the position ($,+,+) (Fig. 1). 

To migrate from this position towards one of 
the six possible neighboring positions, this 
cation may take either of two ways. It can pass 
through the center of the reticular plane where 
the electric potential is negative (way 111213 in 
Fig. 1) or by the centers of the two other planes 
equivalent to this point of view (that is to say, 
the negative ions are on the small diagonal of the 
side crossed). It can also pass through the centers 
of reticular planes where the electric potential is 
positive (way 1,12’1,’ in Fig. 1). 

But the migrant ion being positive, the second 
way would necessitate an enthalpy of migration 
greater than that demanded by the first. In 
practice, the migration of an interstitial cation 
therefore takes place by the type 1 way only; it is 
at least according to this hypothesis that we 
calculate the enthalpy of migration U, of this 
cation. To make the position clear, let us consider 
the way going from the interstitial position I, 
($,$,+) to the interstitial position I, (+,+,+) and 
passing through the point Iz (l,+,+). If W,’ and 
W,’ indicate the enthalpies of the cation at the 
points I1 and I*, the enthalpy of migration is 
Ui = Wl’ - WI+. 

Calculation of W,+ 
We consider that region I is constituted by the 

anions (l,O,O) and (1, 1, l), and by the cations 
(l,O, 1) and (1, 1,O). There are therefore four 

FIG. 1. Different ways for migration of interstitial ion. 

unknowns: they are the relative displacements 
f= x-/r,, of the anions and r) =x+/r,, of the 
cations and the quantities m- = ,u-/erO and 
m, = p+/er,, which are proportional to the 
dipoles induced on these same ions. To calculate 
the repulsion forces, we write that each of the 
region I ions is submitted to an interaction from 
its six nearest neighbors [whose displacements 
are calculated by formula (1)] and possibly from 
the defect, when the interionic distance is equal 
to or less than the total of the ionic radii (that is 
to say, when there is contact). 

For example, if d,-d, indicate, respectively, the 
distances between the ion (l,O, 0) on the one hand 
and the ions (l,l,O) or (l,O,l), (l,-1,0) or 
(1,0,-l), tO,O,O), C&0,0), and the defect t&4,3) 
on the other hand, the repulsion energy of the 
ion (l,O,O) is 

1 w(r) = 2w(d,) + 2w(dJ + o(dJ 

+ 44 + 44, 

whence 

F(“-’ = _ a w(r)) 
r dx 

0.3645 - f - 
4 

with 

d, = [(0.6248 + 6)’ + (0.7808 + Y)~]“~, 

d2 = (1.0287 - 1.27495 + g2)1’2, 

d3 = (1.0330 - 0.72905 + g2)1’2, 

d4 = (1.0574 + 0.68225 + g2)1’2, 

and 

d5 = (0.6248 + 6). 

In the same way if de, d, and dI represent the 
distances between the cation (l,l,O) and its six 
neighbors (0, 1,0) or (2,1,0), (1,2,0) or (1,1,-l), 



76 CERlSlER AND GAUNE 

(l,O, 0) or (1 , 1, I), the repulsion force acting on 
one of these cations from region I is 

with 
ds = (0.9677 - 0.0258 71 + q2)“2 
d, = (0.9758 - 1.53967 : q2)i’2: 

The force of electrical origin F,- acting on 
(l,O,O)istheresultant ofseveralforces: inregion1, 
Force created by the defect : 

f, = (-e2/47reo ro2) ( l/d,2); 

Force due to the displacement of (1 , 1,l) : 

Force due to the displacements of (l,O, 1) and 
(l,l,O): 

Force created by the dipole of (1, 1,l) : 

f4 = (e2/4mo ro2) (m-/4d53); 

Force created by the dipoles of (l,O, 1) and 
U,l,O): 

fs = (e2/47rco ro2) (2.9262m+/d,)). 

In region II, the force created by the polarization 
of all the medium is 

fs = y( l.l636M- + 1.4474M+), 

y being a characteristic number of the crystalline 
structure of NaNO, (3). Whence: 

F,- = ;fi. 
1 

In the same way the force F,+ acting on (l,O, 1) 
can be expressed thus : 

1 1 24 
- (1.5617~)~ + w - p 

24 
+(l + 1.5617~ +T~))‘~ 

-y(OA477M- + 1.9106M+) 
I 

, 

with 
ds = 0.7808 + 7. 

The solutions of the system of equations I : 

are .$=0.25, 7 ~0.108, m, -0.0171 and m-= 
0.1078. The polarization potential at the center 
of the face is thus : 

v = -P- \3.2[ 2.567 -. - --- 
47re0 r. (0.625 i 5 0.78 + 7j 

2m- 2m, - - - -_~^ 
(0.625 + o2 (0.78 + $2 

-y(6.2750M- + 7.9987/W.) . 
I 

The first two terms are due to the displacement 
of the ions of region I, the following two represent 
the potential created by the dipoles of these ions 
and, lastly, the fifth is the potential produced by 
region II. 

The electrostatic energy of the ion at point I2 
is 

Es = Ae2/(4vrco ro) + 3 Ve = -2.67 eV, 

(where A = -0.325 represents the Madelung 
constant of the network related to point I,) and 
that of repulsion E, = 0.97 eV. Whence, W2 = 
Es + E, = -1.7 eV as W, = -3.45 eV (3). It 
results from this that U, = W2 - W, = 1.75 eV. 

Enthdpy of Migration of a Cation Vacancy 

Most authors suppose that, in halides, the 
defect takes a direct way (2, 4). We work from 
the same hypothesis, that is, we presume that the 
migration of a cation vacancy takes place on one 
face of the elementary rhombohedron (Fig. 2). 
The site of the vacancy may be taken up by one 
of the 12 neighboring cations, such as (-1,-l ,0) L3 

L2 

b 1 

FIG. 2. Different ways for migration of cationic vacancy. 
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or (1, -1,O). As in the preceding paragraph, there 
are therefore two possible ways of migration 
according to whether the ion moves along a small 
diagonal (way 1 of Fig. 2), or on the contrary 
along a large diagonal (way 2). In this present 
work we consider in detail the case of way 1 only, 
which corresponds to the weakest enthalpy U,. 
To evaluate the value of U,, two successive 
operations are carried out: First, the ion from 
site L, (-l,-1,0) is removed and put in crystal. 
In order to do this, energy - W, must be supplied. 
It is then replaced in the crystal in L2 (-$,--&,O) 
and the energy received is W,, whence U, = 
w,- w,. 

Calculation of W, 
This is the energy necessary to create a vacancy 

in Li in the presence of the vacancy taking up 
site L, (O,O,O). We suppose that the repulsion 
energy E, and that the polarization potential V, 
brought into play on the creation of this second 
vacancy are equal to those of an isolated vacancy. 
Electrostatic energy is easily calculated by 
Es = e(V+ +I’,>, where V is the electrostatic 
potential which exists in Li before the creation 
of the second vacancy. The potential, V is the 
sum of several terms which represent : 
Potential created by all the crystal ions : 

-(e/4rre0r,)A, (with A, = 1.719); 

Potential created by the vacancy L, : 

-(e/4mo) (1/1.2496r,); 

Potential created by the dipoles induced by 
polarization in region II : 

(e/4rc,,ro)y(4.781M+ + 4.368MJ; 

Potential created by the electronic polarization 
and the displacement of the six neighbors of L, 
(region I) : 

e/(4m0 ro) 0.1407. 

We have obtained Es = -5.28 eV, now E, = 0.33 
eV (3), whence W, = -4.95 eV. 

Calculation of W, 
It is the enthalpy brought into play to place the 

cation in the site (--&,-+, 0) in the presence of the 
two vacancies in Li and L,. To calculate the value 
of the polarization potential due to the presence 
of this extra defect (Fig. 3) using Mott and 
Littleton’s method, we suppose that the region I 
is limited to the ions (-1 , 0,O) and (0, -1,O). 

If dl, d2, d3 and d4 represent, respectively the 

+ b 

FIG. 3. The saddle-point configuration for the vacancy 
migration. 

distanceoftheion(O,-l,O)at(2,0,O)or(l,-l,O), 
(l,O,l), (1,0,-l) and LZ, the repulsion force 
acting on one of the ions of region I is : 

with 
dl = (0.8537 - 1.3737f + e*)l’*, 

d2 = (0.9851 - 0.03475 + (*)I’*, 

d3 = (0.9851 -i- 0.0116< + e*)“*, 
and 

d4 = 0.7808 + 5. 

The electrostatic force is the resultant of several 
forces which are : 
Force exerted by the two vacancies and the 
interstitial ion : 

24 1 -- * 
(1 $- 1.5617e + .$*))‘* d3* 1 ’ 

Force created by the dipole of the other ion of 
region I : 

f2 = (e214~~o h’> (m/Jd33> ; 
Force due to the displacement of the other ion of 
region I : 

Force created by the polarization induced in 
region II by the three defects and which can be 
split up, in its turn, into several terms by cal- 
culating the action due to each defect taken in 
isolation. These are : 
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(1) Force created by the polarization induced 
by the interstitial cation : 

f4= -$--&0448M, + 1.911K); 

(2) Force created by the polarization induced 
by the vacancy L,. For the ions far from the 
vacancy (that is, all the ions of the crystal except 
(+LO,O), (O,l,O), (O,O,l) and (0,0,-l)), this 
force is : 

f5 = -&y(1.873M, + 0.508K). 

For the four ions near the vacancy, the force 
acting on the ion (-l,O,O) or (O,-1,O) can be 
calculated easily, if we know that the displace- 
ment of the ions is O.O41r,, and the dipole is 
TV = O.O59er, (3). For example, the force due to 
the displacement of (2,0,0) can be expressed thus : 

e2 (2.5396 + 3.18748 + [2)“2 ______ 
‘=-47~e~r,,~ [ (4.1657 + 3.1874( + [2)3’2 

(2.3739 + 3.12325 + (2)“2 - 
(4 - 3.1232[ + [2)3’2 1 - 

(3) Finally, the force created by the polariza- 
tion induced by the vacancy Li which is equal 
to that of L,. 

The solutions of system 11, 

II F,+Fr=O; 
l m = -F, cc/e2 rO, 

are 5 = 0.0646 and m = 0.0231. Now in the 
presence of the two vacancies only the ion 
(-1 ,O,O) or (0, -1,O) is displaced from 5 = 0.0640, 
and m has the value -0.0921. Thus, practically, 
the introduction of the interstitial cation in L2 
provokes no displacement of the ions in the 
region I, but on the contrary the induced dipole 
undergoes an increase, Am = 0.115, and the 
polarization potential VP is: 

” = 47r10 r,, [ 
2Am 

(0.78 + 5)’ 

-y(6.273M+ + 7.499M-) 1 . 

The electrostatic energy existing in L2 is 
Es = e( V + $V,), where Vrepresents the potential 
existing in L2 before the introduction of the ion, 
that is, in the presence of the two L, and L3. It 
represents, therefore, the potential created by all 
the ions, by the two vacancies, and by the 
polarization induced by these latter. We shall 

find E, = 5.74 eV and E, = 1.54 eV, whence 
W, = -4.20 eV, and U, = W, - W, =0.75 eV 
can be deduced. 

Discussion 

It is not easy to calculate precision on values 
U, and U, because it depends on the one with 
which the quantities M+, M-, M’, b and p are 
known. And these are calculated by supposing 
the crystal to be isotropic, and starting from 
experimental values which are themselves tainted 
with errors as they have generally been obtained 
at room temperature. Thus the error on U, has 
been estimated at about 10%. That on U, is 
greater, in the region of 20-25%, because of the 
important relaxations which occur in the presence 
of the interstitial ion. 

If one wishes to compare the theoretical and 
experimental values of U,, a difficulty is met with, 
for this magnitude depends on the temperature 
field. In fact, sodium nitrate crystallizes in the 
rhombohedric system from room temperature 
up to fusion, but between 150 and 275°C a 
progressive thermal transformation takes place 
linked to the disorder of the anions, which has 
repercussions on electrical conductivity : The 
logu vs l/T shows a change in slope at these 
temperatures (I, 5-7). 

When t > 275”C, we obtained U, = 0.67 eV 
(2); From 150 to 275°C U, varies from 0.74 to 
0.67 eV, which corresponds, on curves logo vs 
l/T, to an apparent activation enthalpy of 
0.99 eV (Z), whereas Mariani and colleagues (5) 
obtain a fixed value of 0.87 eV; the value of U, 
for t < 150°C was not determined but trans- 
formation being continuous, it can be estimated 
at 0.74 eV. Finally the calculated value, which is 
0.75 eV, agrees well with the different experi- 
mental values which range from 0.67 to 0.87 eV. 
In the case of Ui no experimental value exists; 
Mariani (6) estimates it higher than i.4 eV at 
low temperature, which agrees with our value. 

In conclusion, the method we use enables 
migration enthalpies of defects in nitrates to be 
calculated. But as the properties of these salts 
(polarizability, dielectric constant, repulsion 
strength, etc.) are not known very well, it is not 
possible at the moment to calculate the values of 
these enthalpies in each temperature field and to 
effect a prediction a priori of the transport 
properties of electric current in these salts. 

Nevertheless, this method is altogether general. 
It can be applied in particular to cubic crystals 
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complicated than that of NaN03 and their better 34,485 (1938). 

known physical properties allow a greater 3. P. CERNER AND P. GAIJNE, J. Solid State Chem. 3,473 

number of interactions to be taken into account, (1971). 

such as repulsion between second nearest 4. R. GUCCIONE, M. P. TOSI, AND M. J. A~DENTE, J. Phys. 

neighbors or elasticity phenomena. Chem. Solids 10,162 (1959). 
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